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ABSTRACT

Masking is a perceptual effect in which contents of the image reduce the ability of the observer to see the
target signals hidden in the image. Characterization of masking effects plays an important role in modern
image quality assessment (IQA) algorithms. In this work, we attribute the reduced sensitivity to the inhibition
imposed by adjacent visual channels. In our model, each visual channel is excited by the contrast difference
between the reference and distorted image in the corresponding channel and suppressed by the activities of
the mask in adjacent channels. The model parameters are fitted to the results of a psychophysical experiment
conducted with a set of different natural texture masks. Cross-validation is performed to demonstrate the model’s
performance in predicting the target detection threshold. The results of this work could be applied to improve
the performance of current HVS-based IQA algorithms.
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1. INTRODUCTION

Masking is a perceptual effect in which the contents of the image inhibit the observer’s ability to see a given target
signal. For decades, researchers have been making significant efforts to understanding the nature of masking
and trying to account for it in the modeling of the low level HVS.1–7 Models for masking have been applied
in many traditional image processing tasks, such as image compression,8 digital watermarking,9 image quality
assessment (IQA).2,10 With regard to IQA, the content of the image and the defects resulted from all aspects
of image processing and rendering pipeline act as masks and targets, respectively. Mainstream perceptual IQA
algorithms more or less account for the masking effect either explicitly in HVS models6,7, 11 or implicitly in
non-HVS models.10,12,13 Chandler14 compares the performance of different IQA algorithms in predicting the
local mask detection thresholds. Despite the success of many non-HVS based algorithms in evaluating overall
image quality for natural images, HVS-based models demonstrate their superiority in predicting the detection
threshold under natural masks. Among all mechanisms resulting in masking,6,7 contrast masking receives the
most discussion. Standard HVS models characterize contrast masking with a divisive gain control method that
penalizes the visual response based on the contrast of the mask in the spatial neighborhood.1,2, 4 But the
mechanism of gain control is still largely unknown and requires further research.

Despite the fact that considerable effort has been made to fit the model parameters to experimental data,1,2, 15

in most cases the parameters are only optimized for a very specific type of unnatural mask such as sinusoidal
gratings or white noise. Very limited research has been devoted to investigating the masking phenomenon in
natural image.8,9, 16,17 Masry9 suggests reasonable masking prediction results for texture using a neural model2

and parameters obtained from unnatural masks. Chandler16 presents content-adaptive parameters for the same
neural model using natural image masks and targets resulting from wavelet quantization. But the optimized
parameters do not generalize well across different types of textures and defects.

Given the complexity of natural images and the neural response, we treat the neural-level activities of the
HVS as a black box, and approach the masking effect by investigating the perceptual tolerance to a contrast
difference in each visual channel. In this paper, we attribute the reduced sensitivity in one visual channel to the
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Figure 1. Flow diagram of the proposed visual model incorporating masking

activities of the mask in the adjacent channels. Results of psychophysical experiment are presented to support
the validity of this model. Section 2 describes the masking model and parameters. Section 3 details the visual
masking experiment using natural texture patches and discusses the results. In Sec. 4, we optimize the model
parameters based on the experimental data and perform cross-validation to verify the effectiveness of the model.
Finally, the conclusions are presented in Sec. 5.

2. MODEL DESCRIPTION

The flow diagram of the proposed model is given in Fig. 1. The reference image is processed through a defect
simulator to generate an image with distortions that may result from a variety of image capture, processing,
and rendering processes. The luminance channels of the reference image and distorted image are inputs to the
framework that evaluates the perceptual difference. The first stage of the framework applies frequency-based
decomposition to the image that simulates the multi-channel linear response of the HVS. Standard approaches
at this stage include wavelet decomposition,18 Gabor pyramid decomposition,19 and specifically in this work,
steerable pyramid decomposition.5 After the decomposition stage, we follow Osberger’s technique4 and convert
the sub-band decomposed image to a contrast map defined by Peli’s Local Band-Limited Contrast:20

ck,o(x, y) =
ak,o(x, y)

l∗k(x, y)
, (1)

where ck,o is the local contrast of a particular frequency band at (k, o), where k and o indicate the radial frequency
band and orientation, respectively (See Fig. 2), ak,o is the decomposed sub-band image and l∗k is the corresponding
corrected low-pass luminance image within radial frequency band k. The corrected low-pass luminance image l∗k
is obtained from the original low-pass luminance image lk by enforcing a cut-off at low luminance levels and an
enhancement at high luminance levels to account for the reduction of contrast sensitivity due to the breakdown
of Weber’s Law for very dark and very bright luminance levels.21

The next stage in the model characterizes the masking effect of the HVS, and is also most debated in the
literature. While many HVS models account for the nonlinear contrast response of neurons, we only focus on the
perceptual tolerance to contrast difference in each frequency band. The visual response in band (k, o) is modeled
computationally as

rk,o(x, y) =
crefk,o (x, y)− cdstk,o(x, y)

IP
({
crefp,q (x, y)

∣∣∣(p, q) ∈ adj(k, o)} , CSF (k, o)
) , (2)
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Figure 2. Labels of Decomposed Sub-bands

where rk,o is the visual response in band (k, o), and cref and cdst are the band-limited contrast of the reference
and distorted images, respectively. The function IP (·) defines the contribution of each adjacent band to the
sensitivity inhibition of the current band.

The IP (·) function takes as input the local mean contrast of the mask in the adjacent frequency bands and
Daly’s contrast sensitivity function.22 It generates an image as its output that depends on the spatial location

(x, y). The image crefp,q (x, y) is the average of the local contrast of the mask within a sliding window centered at
(x, y) in the band (p, q). The set adj(k, o) consists of the bands that are adjacent to the current band (k, o). For
a given frequency band, it includes sub-bands of all orientations in the same radial band. For a given orientation,
it includes the frequency bands one octave above and below the current band at the same orientation. As an
example, for a sub-band decomposition with 3 levels and 4 orientations, we have

adj(k, o) = {(k − 1, o), (k + 1, o), (k, 1), (k, 2), (k, 3), (k, 4)} . (3)

In our model, the inhibitory pooling function is defined as

IP
({
crefp,q (x, y)

∣∣∣(p, q) ∈ adj(k, o)} , CSF (k, o)
)

= max

bc +
∑

(p,q)∈adj(k,o)

bp−k,q−o

(
crefp,q (x, y)

)α
,

λ

CSF (k, o)

 ,
(4)

where α is the pointwise nonlinear inhibitory exponent, and bc and bi,j are linear inhibitory pooling coefficients.
Note that the model uses a single set of inhibitory parameters for all bands being inhibited. The linear coefficients
are applied to the mask contrasts in adjacent bands based on their locations relative to the current band on the
2-D frequency plane. There are some additional constraints on the linear coefficients:

bi,j = bi,−j ,

bi,j = bi,j±O,
(5)

where O is the number of orientations in the linear sub-band decomposition. The first equation comes from a
symmetry constraint, meaning that adjacent bands at the same angle relative to the current band on both sides
of that band should enforce the same inhibition to the current band. The second equation derives from the
circular labeling of sub-band orientations. In the example of Eq. (3), there are 6 linear inhibition parameters: bc
for a constant bias, b0,0 for the current band, b0,2 for the two orthogonal bands (at ±90 degrees relative to the
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current band), b0,1 for the two diagonal bands (at ±45 degrees relative to the current band), b1,0 and b−1,0 for
radially adjacent bands an octave above and below the current band, respectively.

The max operation is derived from the fact that at very low mask contrast, the masking effect is turned
off; and the contrast sensitivity (or detection threshold) at each sub-band simply follows the contrast sensitivity
function,22 which has been investigated intensively for decades.

The final stage of the framework performs a probability summation of the responses across different visual
channels:

R(x, y) =

∑
k,o

|rk,o(x, y)|β
 1

β

(6)

where β is usually selected to be between 1.5 and 4. The target visibility map can be generated from R(x, y)
via a simple threshold-based decision making process; and the quality map can be built by fitting R(x, y) to
subjective scores obtained from psychophysical experiments using a nonlinear transform.

The parameters in our framework include the nonlinear exponent α and the linear coefficients bc and bi,j in
the inhibition pooling function, and β from the probability summation stage. Experimental data is required so
as to determine values for the model parameters that are optimized to fit the HVS response. A patch-based
psychophysical experiment will be detailed in the next section; and the estimation of optimized parameter values
for a general natural texture mask is discussed in Sec. 4.

3. PSYCHOPHYSICAL EXPERIMENT

The goal of the psychophysical experiment is to determine optimized values for the parameters in the inhibitory
pooling function, and to verify the model via cross-validation. The basic idea is to find the contrast detection
threshold in each visual channel in the presence of a natural texture mask, and then to associate the threshold
of detection with the contrast activities of the texture patch in adjacent visual channels.

The nonlinear channel pooling in the visual model gives rise to a nonlinear optimization problem. To overcome
the computational difficulty of model fitting, we excite the dominant response in each visual channel individually
by applying a 2-D sinusoidal target with impulse frequency content located at the center of each visual sub-
band. For example, with a reasonable selection for the value of β, if the visual channel (k∗, o∗) is excited with an
impulse excitation in band (k∗, o∗), the response in the particular channel (k∗, o∗) becomes dominant, meaning
that |rk∗,o∗ | � |rk,o| for ∀(k, o) 6= (k∗, o∗); and thus the total visual response can be approximated by the channel
response:

R(x, y) =

∑
k,o

|rk,o(x, y)|β
 1

β

≈ |rk∗,o∗ |. (7)

This is a very convenient condition that we utilize to simplify optimal parameter estimation in Sec. 4.

3.1 Apparatus and environment

Stimuli are displayed on a 22 in HP L2208w HD monitor (Hewlett-Packard Company, Palo Alto, CA) at a reso-
lution of 28 pixels/cm2. The display renders a luminance range of 0.4− 176cd/m2. The monitor is characterized
using the method described by Arslan23 so that the digital RGB input can be mapped to CIE XYZ values of
the light emitted from the display. The luminance and chromaticity are measured using a colorimeter PR-705
(PhotoResearch, Inc., Chatsworth, CA). All stimuli are viewed in a darkened room at a distance of about 60 cm,
which leads to a visual resolution of 30 pixels/degree.

SPIE-IS&T/ Vol. 9016  90160D-4



3.2 Stimuli

The set of texture masks used in this work consists of five 128 × 128 homogeneous color texture images ob-
tained from the MIT Vision Texture Database (http://vismod.media.mit.edu/vismod/imagery/VisionTexture/,
See Fig. 3). Although in the current model we don’t account for chromaticity masking, which will be part of our
future work, we choose textures with relatively neutral color to minimize the influence of chromaticity so that
we can still assume the masking effects come primarily from the luminance channel. As is shown later in the
paper, it turns out that the model works quite well for the color textures used in the experiment.

Bark Brick Fabric1 Fabric2 Peanuts

Figure 3. Texture masks used in the experiment.

We generate masks of seven levels of contrast from each texture patch. The contrast of each mask is adjusted
by adding a controlled local variation to the mean color intensity in each color channel of the patch:

R̂ = α(R− µR) + µR,

Ĝ = α(G− µG) + µG,

B̂ = α(B − µB) + µB .

(8)

where R, G, B and R̂, Ĝ, B̂ denote the colors of the texture images before and after contrast adjustment,
respectively, and α is the scaling factor that controls the contrast. The contrast of the mask texture is computed
only in the Y channel of the image using the RMS contrast definition.20 Following the practice in previous
work,16 we choose the seven levels of RMS contrast to be 0.01, 0.02, . . . , 0.64.

The targets applied to the masks are sinusoidal signals in three radial frequency bands one octave apart with
four orientations, resulting in 12 different targets for each mask. To generate the stimuli, the target signal is
added evenly to the RGB channels of the mask with an adjustable magnitude. For each combination of the masks
and targets, seven different thresholds need to be measured for a complete TvC (threshold vs. contrast) curve,
which depicts the threshold elevation as a function of the contrast of the mask. Considering that the masking
effect in the low mask contrast region is not fully activated, we only measure the threshold of detection in the low
mask contrast region (with RMS contrast below 0.08) for half of the stimuli (all texture masks combined with
vertical and 45-degree oriented targets) to simplify the phychophysical task. Example stimuli generated from the
texture Brick at RMS contrast 0.16 combined with sinusoidal targets of different frequencies and orientations
are illustrated in Fig. 4.

3.3 Procedures

The thresholds are measured via a yes/no procedure. On each trial, the subjects are asked to view a patch
containing mask and target. The initial strength and phase of the target are randomized. The subjects give a
response by indicating whether the target is visible or not. A black patch is shown to the subjects for 2 seconds;
and the phase of the target is shifted by a random value between two successive trials so as to minimize memory
effects. The contrast of the target can be adjusted via α. If the choice is visible, the contrast of the target is
decreased; if the choice is invisible, the contrast of the target is increased. The target contrasts are controlled
via a QUEST procedure24 using a Weibull psychometric function24 parameterized by ε = 1.15, β = 3.5, γ = 0.

3.4 Subjects

Two expert subjects participated in this experiment; Both are graduate students at Purdue University working
in the area of image processing. Each subject made two evaluations for each stimulus separated in time by two
days.
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3.5 Results and analysis

Figure 5 shows the experiment results in the form of TvC curves, where the just noticeable band-limit contrast
difference is depicted as a function of the RMS contrast of the mask. Each curve illustrates the threshold elevation
for a particular frequency band, as the contrast of mask changes. As is observed from Fig. 5, at very low mask
contrast levels, the thresholds exhibit limited dependency on the mask contrast. This is due to the fact that the
masking effect is not fully activated at these mask contrast levels; and the threshold can be described via the
CSF,22 which only depends on the frequency and orientation of the excitation.

When the masking effect is activated, the detection thresholds rise almost linearly with the RMS contrast
of the mask on a log-log scale. Moreover, the threshold elevation in each visual channel is a strong function of
the type of mask. Textures with finer details (Fabric1,2) tend to mask high frequency targets (k = 1) more
significantly than coarse textures (Bark, Brick), while coarse textures put more masking over the middle and low
frequency targets (k = 2, 3). And textures that exhibit strong directional patterns (e.g. Bark exhibits vertically
oriented patterns) enforce a stronger mask on targets with similar orientation (o = 1). This result provides the
rationale for the model of adjacent visual channel inhibition.

4. FITTING THE MODEL TO THE EXPERIMENT RESULT

First, we pool across each patch spatially using an L2 norm to get a metric that is independent of spatial position
for the contrast difference and mask contrast

dk,o = 2

√
1

Mk,o

∑
x,y

∣∣∣crefk,o (x, y)− cdefk,o (x, y)
∣∣∣2,

cmp,q = 2

√
1

Mp,q

∑
x,y

∣∣∣crefp,q (x, y)
∣∣∣2. (9)

Here Mk,o is the number of pixels in the sub-band image ak,o(x, y), dk,o is the spatially averaged contrast
difference in band (k, o); and cmp,q is the spatially averaged mask contrast in the adjacent band (p, q).

Without loss of generality, we set the just noticeable response of the model to unity. As was mentioned in
the previous section, the band-pass excitation facilitates the parameter estimation by approximating the total
visual response with the band-pass response in the excited channel.

o = 1 o = 2 o = 3 o = 4

k = 1

k = 2

k = 3

vertical
45-degree
oriented

horizontal
135-degree
oriented

Figure 4. Example stimuli generated from the texture Brick at RMS contrast 0.16 combined with sinusoidal targets of
different frequencies and orientations.
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Figure 5. TvC curves obtained from the psychophysical experiment.
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Since at low mask contrast region the masking effect has not been fully activated and can be described simply
by CSF, we only focus on the masking behavior in the middle and high mask contrast regions (RMS contrast
above 0.08). When the masking effect is activated, at the detection threshold for sub-band (k∗, o∗), we have

rk∗,o∗ =
dk∗,o∗

IP
({
cmp,q
∣∣(p, q) ∈ adj(k∗, o∗)} , CSF (k∗, o∗)

) ≈ 1. (10)

or equivalently,

bc +
∑

(p,q)∈adj(k∗,o∗)

bp−k∗,q−o∗cmp,q
α

= dk∗,o∗ . (11)

In other words, with fixed α the task of parameter estimation boils down to a linear regression problem. The
value for α is selected by trying different values between 0.5 and 2, and choosing the one resulting in the least
fitting error. Following this procedure, optimal value for α is found to be 0.9.

To ensure complete activation of visual masking, experiment data with mask contrast above 0.08 is used
for the model training. The training samples include the 60 TvC curves from 12 targets for different radial
frequencies and orientations applied to the five texture masks.

Feature selection is done by applying a LASSO penalty25 to the regression. Figure 6 illustrates the LASSO
regression result for choosing the linear inhibition parameters. The horizontal axis shows the penalty λ in log
scale; and the vertical axis shows the magnitudes of the linear inhibitory parameters.

1E-5 1E-4 1E-3 0.01
0.0

0.2

0.4

0.6

0.8

1.0

 

  bc: constant bias
 b0,0: current band inhibition
 b0,2: orthogonal band inhibition
 b0,1: diagonal band inhibition
 b-1,0: radial adjacent band inhibition (low)
 b1,0: radial adjacent band inhibition (high)

m
ag

ni
tu

de

Figure 6. LASSO regression result for the linear inhibitory parameters.

Not surprisingly, the mask contrast in the same band as the excitation plays the most important role in the
pattern masking. The next most important component is the mask contrast in the adjacent band one octave
below the excited channel, followed by the contrast in the adjacent band an octave above the excited band. The
orthogonal band contrast of the mask also makes some contribution to the inhibition. The constant bias bc and
the contrast response in diagonal channels provide negligible contributions to the inhibition. This may be due
to the fact that the diagonal components of the mask also excite the center and orthogonal channels, and thus
express their contribution in the inhibitory coefficients for center and orthogonal channels. This explains the
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psychophysical result in Sec. 3 that textures with a strong pattern in the frequency bands adjacent to that of
the target signal place a stronger perceptual mask over the targets.

Cross-validation is performed to evaluate the performance of this model in predicting the detection threshold
of each visual channel in the presence of a natural mask. We adopt the leave-one-out strategy, using four of the
texture masks as training samples and the one remaining as the testing sample. In other words, 48 TvC curves
are used in the training; and 12 are used to test the prediction accuracy. The training is primarily based on the
measured thresholds in the middle and high contrast parts of the TvC curve. The prediction in the low mask
contrast region is primarily obtained from the classic CSF. The cross-validation result is given in Fig. 7.

Each graph in Fig. 7 illustrates the testing result with one of the texture masks, using the parameters
trained on the other four texture patches. Despite the great variation among the texture patterns, the predicted
detection thresholds in each visual channel generally correspond quite well with the actual measurement. This
cross-validation demonstrates reasonable prediction performance of the model for natural texture masks even
with very different mask patterns.

5. CONCLUSION

In this work, we develop a contrast masking model based on adjacent visual channel inhibition. In this model, each
visual channel is excited by the contrast difference between the reference and distorted images in that channels
and suppressed by the activities of the mask in adjacent channels. A psychophysical experiment is conducted to
collect data that reflects the human response to band-pass target excitation in the presence of natural masks.
Optimized parameters are obtained by fitting the model to the experiment result. Cross-validation is performed
on a set of natural textures with different patterns to demonstrate the model’s good performance in predicting
the target detection threshold in the presence of natural textures.
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Figure 7. Cross-validation result of the predicted detection thresholds in the presence of texture masks.

SPIE-IS&T/ Vol. 9016  90160D-11


